Contemporary PBSB: Cells, systems, and quantitative methods V5.0

Course content and organization are designed to prepare students for twenty-first century research in the function, analysis, modeling, and understanding of living systems at each of several scales, from the molecular through the cellular to the organ system and organism. Multiscale and translational examples develop conceptual skills necessary to design meaningful experiments, derive insight from journal reports, work within the group structure now essential for contemporary research, and communicate new developments and related findings to today's peers and future students. Structural and developmental concepts are covered as they illuminate function.

Each module consists of multiple weeks. Typical weeks for many modules include two in-depth lectureconferences that combine careful presentation of core material with student participation, and conclude with either a computational analysis and/or model, or an illuminating article from the literature. Other modules introduce new instructional modalities and perspectives designed to instill skills essential for researchers, while providing insights into scales or approaches central to contemporary research.

Days and times:	Mondays and Wednesdays 1 to 3 PM; Fridays 3 to 5 PM except as noted
Room:	LC-504, 1300 York Avenue

Quarters I and II: PBSB.9000.01-Contemporary PBSB 1-3

15 weeks: August 29, 2016 - December 9, 2016.

This is the first term of a one-year modular course required of all first-year students in the PBSB Program. The entire course or individual modules are open to students of other programs with the permission of the course director; class limit 20 students.

CPBSB 1: Membranes and cells (MAC)

Four weeks: August 29, 2016 - September 23, 2016; Daniel Gardner

This module introduces rigorous, essential fundamentals of membranes, cells, and membrane proteins. It also uses the relation between experimentally-derived data and mathematical and computational models and analyses as an introduction to how biophysicists think. Such a view is fundamental to understanding contemporary PBSB research, no matter the level, techniques, or system.

Week 1: Membranes and compartments

Tuesday, Aug. 30 @1 PM:	Cell membranes, structure and function –Andersen
Wednesday, August 31:	Compartments and electrolytes – Andersen
Friday, Sept. 2:	Journal Club - Gardner

Week 2: Membrane potentials and action potentials

<i>Tuesday, Sept.</i> 6 @1 PM: Wednesday, Sept. 7:	Membrane potentials and action potentials – Gardner Hodgkin-Huxley models and beyond – Gardner
Friday, Sept. 9:	Channels, transporters, and pumps – Palmer
Weeks 3 and 4: Membrai	ne protein structure and function
Monday, Sept. 12:	Protein structure/function and modification – Boudker
Wednesday, Sept. 14:	Introduction to analysis of living systems (osmotic balance computer lab) – Krogh-Madsen
Friday, Sept. 16:	Channeling transporters, transporting channels - Accardi
Monday, Sept. 19: Wednesday, Sept. 21: Friday, Sept. 23:	Computer lab Hodgkin-Huxley modeling – Gardner, Victor Neuromuscular transmission – Dittman Module evaluation/exam

CPBSB 2: Protein function signaling and synthesis (PFSAS)

Five weeks: September 26, 2016 - October 28, 2016; Olga Boudker

Module 2 combines lectures on aspects of cellular signaling coupled to guided independent work by students, teamed in pairs. Individual research papers will be assigned to student pairs in advance, during the week of Sept. 19.

Week 5: Monday, Sept. 26: Wednesday, Sept 28: Friday, Sept. 30:	Signaling at membranes – Dittman Thinking about science: the grant proposal/review process – Boudker Protein viewing and modeling I (lab) – Khelashvili
Week 6: Monday, Oct. 3: Wednesday, Oct. 5: Friday, Oct. 7:	Thermodynamics and signaling – Boudker Two-on-one student meetings with advising faculty Protein viewing and modeling II (lab) –Khelashvili
Week 7: Monday, Oct. 10: Wednesday, Oct. 12: Friday, Oct. 14:	Ion channel signaling - TBD Student oral presentations of project Aims I Student oral presentations of project Aims II
Week 8: Monday, Oct. 17: Wednesday, Oct. 19: Friday, Oct. 21:	Transcription – Skrabanek Protein multiple sequence alignments (lab) – Skrabanek Departmental Retreat; no class
Week 9: Monday, Oct 24: Wednesday, Oct 26: Friday, Oct 28:	GPCR signaling - TBD Regulatory network modeling – Khelashvili Mock NIH study section (Extended class)

Final proposals due Friday, Nov 4

CPBSB 3: Control and communication in bodies and brains (CCBB)

Six weeks: October 31, 2016 – December 9, 2016; Bernice Grafstein (note Thanksgiving break November 24 – 25)

CPBSB3 will give a working introduction to the concepts underlying the nervous system, and the ongoing study of it, with examples drawn from molecular, cellular, and systems levels. At the same time, it again uses student research and presentations, along with student critiques, as a principal modality, thus developing skills essential to contemporary research.

Week 10: Neurons and brain networks I

Monday, Oct 31:	Organization of the nervous system I: basic structure, development, sensory coding – Grafstein
Wednesday, Nov 2:	CNS synapses & plasticity - Gardner
Friday, Nov 4:	Neuronal system dynamics: negative feedback – Aksay

Week 11: Neurons and brain networks II

Monday, Nov 7:	Neuronal system dynamics: positive feedback – Aksay
Wednesday, Nov 9:	Organization of the nervous system II: Vision – retina to V1 – Grafstein
Friday, Nov 11:	Student pair-presentations: Sensory organ transduction - Grafstein

Week 12: Neural and chemical pathways		
Monday, Nov 14:	Vision – Nirenberg	
Wednesday, Nov 16:	Mast cells as a communication medium – Silver	
Friday, Nov 18:	Organization of the nervous system III: Central visual pathways - Gardner	
Week 13: Standing up		
Monday, Nov 21:	Organization of the nervous system IV: spinal cord; reflex activity – Grafstein	
Wednesday, Nov 23:	Thanksgiving break, no class	
Friday, Nov 25:	Thanksgiving break, no class	
Week 14: Using the brain		
Monday, Nov 28:	Organization of the nervous system V: cerebral cortex; sensory-motor coordination – Grafstein	
Wednesday, Nov 30:	Memory & learning – Prusky	
Friday, Dec 2:	Computational lab: vision – Victor, Gardner	
Week 15: Rewiring the nervous system		
Monday, Dec 5:	Organization of the nervous system VI: structural plasticity – Grafstein	
Wednesday, Dec 7:	Student presentations: Nervous system topics I (7 students) - Grafstein	
Friday, Dec 9:	Student presentations: Nervous system topics II (7 students) - Grafstein	