Quantitative Understanding in Biology I
Q1-2 2016
Course Syllabus

Tuesday, September 13th, 2016 – Thursday, December 15th, 2016
Tuesdays and Thursdays, 5:30 PM – 7:00 PM
Location: Weill Auditorium (or A-250 as indicated)
1300 York Avenue; 2nd Floor, Room C-200 (unless otherwise noted)
Midterm Exam: Thursday, November 3rd (5:30 pm – 7:00 pm) in Room A-250
Final Exam: Thursday, December 15th (5:30 pm – 7:00 pm) in Room C-200

Course Directors:
- Jason Banfelder (jrb2004@med.cornell.edu)
- Luce Skrabanek (las2017@med.cornell.edu)
- Michael LeVine (mil2037@med.cornell.edu)

This course will be fully graded: (Honors, High Pass, Low Pass, Fail)
Course web site: http://physiology.med.cornell.edu/people/banfelder/qbio

Teaching assistants:
- Nimra Asi (nia2015@med.cornell.edu)
- Gabriele Campanella (gae2010@med.cornell.edu)
- Kevin Hadi (keh2019@med.cornell.edu)
- Mehtap Isik (mei2007@med.cornell.edu)
- Zijun Zhao (ziz2003@med.cornell.edu)
Summary

This course will prepare students to apply quantitative techniques to the analysis of experimental data. To emphasize both practical and theoretical skills, the course will involve several hands-on workshops, and the completion of several projects will be required. Students will be well positioned to meet the emerging requirements of funding agencies for formally planned experiments and fully reproducible and documented data analysis methods.

Specific topics include: practical aspects of data formatting and management; graphical, mathematical and verbal communication of quantitative concepts; a review of statistics, with emphasis on the selection of appropriate statistical tests, the use of modern software packages, the interpretation of results, and the design of experiments; the formulation, evaluation, and analysis of mathematical models of biological function, with an emphasis on linear and non-linear regression, determination of model parameters, and the critical comparison of alternative models with regard to over-parameterization.

Class Sessions

1. Quantifying a Sample Distribution
 Tuesday, September 13th, 2016
 summary statistics, quantiles, SD vs. SEM, measurement variation vs. biological variation

2. Probability Density Functions and the Normal Distribution
 Tuesday, September 20th, 2016
 binomial, Poisson, and normal distributions, testing for normality (part I): an introduction to formal statistical tests, testing for normality (part II): qqplots vs. formal tests

3. Lab #1: Practical R (part I)
 Thursday, September 22nd, 2016
 introduction to R, common data structures (vectors, factors, lists, dataframes), importing data

4. Confidence Intervals and Contingency Tables
 Tuesday, September 27th, 2016
 This lecture will be held in Room A-250
t-tests, working with proportional data, why CIs are more informative than p-values, study types (retrospective, prospective, and cross-sectional), working with rare events

5. p-Values and Formal Statistical Testing
 Tuesday, October 4th, 2016
 duality between p-values and CIs, statistical vs. biological significance, choosing an appropriate α, type I and type II errors

6. Lab #2: Practical R (part II)
 Thursday, October 6th, 2016
 libraries and ggplot2, producing publication quality plots, data driven graphics

7. Statistical Power and Experimental Design
 Tuesday, October 11th, 2016
 why you cannot just add a few N to your dataset when $p > 0.05$, appreciating the economics (in time and money) of experimental design, statistical vs. biological significance revisited, designing experiments around hard-to-obtain samples

8. Multiple Hypothesis Testing and ANOVA
 Tuesday, October 18th, 2016
 from Bonferroni to False Discovery Rate, dealing with non-normal data, t-tests revisited, fitting with categorical data, dealing with hierarchical and time-series data

9. Lab #3: Practical R (part III)
 Thursday, October 20th, 2016
 the role of simulation in statistics, non-parametric tests, exploring the optimal stopping problem

10. Bayesian Methods
 Tuesday, October 25th, 2016
 how to incorporate prior knowledge into statistical models

11. Midterm Exam
 Thursday, November 3rd, 2016
 The midterm exam will be held in Room A-250

12. Correlation vs. Linear Regression
 Tuesday, November 8th, 2016
 introduction to modeling in R; why r^2 is not the whole story

13. Lab #4: Correlation and Regression Lab
 Thursday, November 10th, 2016
14. Principal Component Analysis
 Tuesday, November 15th, 2016
 data transformation and data reduction methods

15. Thanksgiving Break: No class
 Week of November 21st, 2016

16. Fitting Model Parameters to Data
 Tuesday, November 29th, 2016
 non-linear regression, a statistical view of curve fitting, confidence intervals revisited

17. Lab #5: Practical R (part IV)
 Thursday, December 1st, 2016
 data wrangling with melt, dcast, and plyr

18. Quantitative Comparison of Models
 Tuesday, December 6th, 2016
 This lecture will be held in Room A-250
 how to avoid over-fitting, F-test and AICs, F-tests as a means of parameter estimation

19. Lab #6: Model Comparison Lab
 Thursday, December 8th, 2016
 Lab #6 will be held in Room A-250

20. Final Exam
 Thursday, December 15th, 2016

Books and Materials

Students will need a laptop computer on which they can install software (R and R Studio), and bring to class. Both packages are free, and run on recent versions of Linux, Mac OS X, and Microsoft Windows.

While the course does not require the use of a specific textbook, the following resources are recommended:

- *Intuitive Biostatistics*, Harvey Motulsky
 One of the most accessible introductions to statistics.

https://www.r-project.org/
https://www.rstudio.com/
• *The Art of R Programming*, Norman Matloff
 One of the more comprehensive introductions to R.

• *R for Everyone*, Jared Lander
 Less in-depth than the above, but covers both basic use of R and basic statistics in a single, accessible text.

• *Practical Computing for Biologists*, Haddock and Dunn
 Covers many computing topics not covered in this class. Recommended for students considering a computational lab for a rotation or thesis.

Assessment

This class will be graded according to the usual WCGS scale (Honors, High Pass, Low Pass, Fail).

Grades will be determined based on several take-home problem sets, and a midterm and final exam.

All students will also be asked to complete a survey at the end of the semester, soliciting feedback on the course to inform its content and format in future years.